USER MANUAL MODEL: SOLAR 1012, SOLAR 1024, SOLAR 2012, SOLAR 2024, SOLAR 3012, SOLAR 3024, SOLAR 3048 | Problem | Possible cause | Solution | | | |------------------------|--|--|--|--| | battan | run out of battery | continue to charge battery full | | | | battery
lowvoltage | battery lower to 10v at machine off status, baterry damaged | change new battery | | | | battery
overvoltage | machine fault/battery connection fault | check machine, and check if battery connection correct. | | | | 3 | connected more loads | turned off inverter,remove some loads | | | | overload | connected big motor load | start power of motor load is huge,3-4 times of
load itself,pls choose the correct load | | | | | The surrounding environment space is small | keep environment unobstructed | | | | over tempterature | | check Fan at normal working | | | | | machine does not turn off but overload | remove some loads | | | | over charge | machine fault/machine "select" switch at wrong position | set "selcet" switch at correct position | | | | | red power button wrong, | check red power button at right place, | | | | without output | machine inside wire connection not correct | check LED lights if normal to confirm inside wire connection | | | | | machine components damaged | open machine case to check components | | | | 8 | machine "select" switch at wrong position | set "selcet" switch at correct position | | | | without charge | machine inside wire connection not correct | check LED lights if normal to confirm inside wire connection | | | | 2 | machine does not at "AC mode" | set at "AC mode" | | | | load light flashing | at power saver on, load less than 25w | add more loads over 25w , 50w is better until
normal | | | | | Fan blocked | check if somthing block fan, like insect, etc. | | | | Fan stops run | Fan jam | open machine case, find a white probe cable (on
cooling fin), let it at short-circuit condition, the
small fan should be run (if not,the fan abnormal) | | | | | Load at short circuit | Check load carefully | | | | Output short circuit | Mosfet broken | Check machine inside | | | | Remark:1kw to 3kv | v machine, the fan starts to run until temperati | ure reaches 50~60 degree | | | | 4kw to 6kw machin | e start machine, the big fan starts to run at the
te temperature reaches 50~60 degree | | | | ... Need any support, contact our customer servicer freely... ### Figures of Unit: Figure 1 top view (RS232,Remote control & Optional) Figure 3 DC side Figure 4 AC side Remark:Used in utility power or solar system. ### **Troubleshooting Guide** Troubleshooting contains information about how to troubleshoot possible error conditions while using the Any Power Combi Inverter & Charger. The following chart is designed to help you quickly pinpoint the most common inverter failures. #### Indicator and Buzzer | | | | Indicator or | | | | |---------------|----------------------------------|------|--------------|--------|----------|----------------------------| | Status | Item | LINE | INVERTER | CHARGE | FAULT | Buzzer | | Line
Mode | CC | √ | × | 4 | × | i — | | | CV | 1 | × | blink | × | - | | | Float | √ | × | blink | √ | _ | | | Standby | √ | × | × | х | | | Invert | Inverter on
(Power saver off) | × | √ | × | × | - | | Mode | Power saver on | × | blink | × | × | (c) | | | Battery Low | ж | V | × | ж | beep 0.5s
every 5s | | | Battery High | × | 4 | × | × | beep 0.5s
every 1s | | | Overload on
invert mode | × | √ | × | × | Refer to
"Audible alam" | | Alarm
Mode | OverTemp on
invert mode | × | 4 | × | ж | beep 0.5s
every 1s | | | OverTemp on line mode | √ | ж | 7 | ж | beep 0.5s
every 1s | | | Over charge | √ | × | 4 | × | beep 0.5s
every 1s | | 8 | Fan lock | × | × | × | 4 | beep
continuous | | | Battery High | × | × | × | 7 | beep
continuous | | Fault
Mode | Inverter mode
overload | × | ж | × | 4 | beep
continuous | | | OverTemp | × | (x) | × | 1 | beep
continuous | | | Over charge | ж | × | × | 4 | beep
continuous | | | Back Feed
Short | х | × : | × | 4 | beep
continuous | Remark: √ shows the indicator on. × shows the indicator off. √, blink shows the indicator blinking about 0.5s on and 0.5s off. ### Table of Contents: | Table Of Contents · · · · · · · · · · · · · · · · · · · | 1 | |---|---| | Figures Of Unit | | | Line Mode Specification | 4 | | Inverter Mode Specification | 5 | | Charge Mode Specification | | | Front Panel····· | 8 | | Connection Diagram And Installation1 | 3 | | Troubleshooting Guide1 | 6 | 16 ### Maximum Power Point Tracking (MPPT) function. Maximum Power Point Tracking, frequently referred to as MPPT, is an electronic system that operates the Photovoltaic (PV) modules in a manner that allows the modules to produce all the power they are capable of. The Solarmate Charge controller is a microprocessor-based system designed to implement the MPPT. And it can increase charge current up to 30% or more compared to traditional charge controllers. (See figure 1). Figure 1 Current, Power vs. Voltage Characteristics #### LCD Display #### 1) Charge Mode When utility is on, LCD indicate charge current: #### 2) Utility Mode On utility mode, the indication and displays are as following figures: #### 3) Battery Mode On battery mode, LCD indicate battery capacity: #### 4) Fault Mode When inverter fault, the indication and displays are as following figures: 1: fan jam 2: overload 3/6/7: output short circuit over temperature battery overvoltage. | | Model | | | | | | | | |--|-------|-----------------------------|------------------|-------------------|------|------|--|--| | MODEL | 1012 | 1024 | 2012 | 2024 | 3012 | 3024 | | | | nput Voltage
Waveform | | 200 | Sinusoidal (util | ity or generator) | | | | | | Nominal Input
Voltage | | 230Vac | | | | | | | | Low Line
Disconnect | | 155Vac±2% | | | | | | | | Low Line
Re-connect | | 164Vac ±2% | | | | | | | | High Line
Disconnect | | | 272Va | 1C ± 2% | | | | | | High Line
Re-connect | | | 265 Va | ac ± 2% | | | | | | Max AC Input
Voltage | | | 270 | Vrms | | | | | | Nominal Input
Frequency | | 50Hz (Auto detection) | | | | | | | | Low Line
Frequency
Re-connect | | 44 <u>+</u> 0.3Hz for 50Hz; | | | | | | | | Low Line
Frequency
Disconnect | | 40 <u>+</u> 0.3Hz for 50Hz; | | | | | | | | High Line
Frequency
Re-connect | | 75±0.3Hz for 50Hz; | | | | | | | | High Line
Frequency
Disconnect | | 80±0.3Hz for 50Hz; | | | | | | | | Output Voltage
Waveform | | As same as Input Waveform | | | | | | | | Over-Load
Protection
(SMPS load) | | | Circuit | breaker | | | | | | Output Short
Circuit
Protection | | | Circuit | breaker | | | | | | Efficiency (Line
Mode) | | | >9 | 5% | | | | | | Transfer Switch
Rating | | | 3 | 0A | | | | | | Transfer Time
(Ac to Dc) | | | 10ms (| (typical) | | | | | | Transfer Time
(Dc to Ac) | | | 10ms (| (typical) | | | | | | Pass through without Battery | | | Υ | es | | | | | | Max Bypass
Overload Current | | | 34 | 0A | | | | | #### Solar changer function There is a solar charger built in, List below is the spec for solar charger Table 1 Electrical specifications@(77 °F) | Rated Voltage | 12/2 | 24V DC | | | |---------------------------------------|---|------------------------|--|--| | Rated charge current | | 40A | | | | Input voltage range | 15-55V DC | | | | | Max. PV open circuit
array voltage | 55 | SV DC | | | | Typical idle consumption | At idle | e < 10mA | | | | Bulk charge | 14.6V(default) | 29.2V(default) | | | | Floating charge | 13.4V(default) | 26.8V(default) | | | | Equalization charge | 14.0V(default) | 28.0V(default) | | | | Over charge disconnection | 14.8V | 29.6V | | | | Over charge recovery | 13.6V | 27.2V | | | | Over discharge disconnection | 10.8V (default) | 21.6V(default) | | | | Over discharge reconnection | 12.3V | 24.6V | | | | Temperature compensation | -13.2mV/°C | -26.4mV/°C | | | | Lead acid battery settings | Ad | justable | | | | NiCad battery settings | Ad | justable | | | | Load control mode | 1.Low Voltage Reconnect (LVR): Adjustable 2.Low Voltage Disconnect (LVD): Automatic disco 3.Reconnection: Includes warning flash before disconnect and reconnection | | | | | Low voltage reconnect | 12.0-14.0 Vdc | 24.0-28.0 Vdc | | | | Low voltage disconnect | 10.5-12.5 Vdc | 21.0-25.0 Vdc | | | | Ambient temperature | 0-40 °C (full load) | 40 - 60 °C (de-rating) | | | | Altitude | Operating5000m, N | Ion-Operating 16000m | | | | Protection class | | P21 | | | | Terminal size(fine/singlewire) | #8 | AWG | | | NOTE: The optional battery temperature sensor automatically adjusts the charging process of the controller according to the type of the battery is selected by user through battery type selector. With the battery temperature sensor installed, the controller will increase or decrease the battery charging voltage depending on the temperature of the battery to optimize the charge to the battery and maintain optional performance of the battery. ### AC Input wiring: Size Selecting the proper wire (cable) size is very important for performance and safety. The Internal wire resistance varies according to amperage and temperature. It is recommended to keep voltage drop in all circuit under 3%. Below table shows specific cable lengths for the input circuit. 1012/1024/2012/2024/2048/3012/3024: 460x260x185MM | Inverter Model
Watts Rating | Nominal
Operating
DC Voltage | Nominal
Operating
AC Voltage | AC Breaker size
Minimum
Wire Size | |--------------------------------|------------------------------------|------------------------------------|---| | 1012 | 12Volts | 230VAC | 8 amps-12AWG | | 1024 | 24Volts | 230VAC | 8 amps-12AWG | | 2012 | 12Volts | 230VAC | 10 amps-12AWG | | 2024 | 24Volts | 230VAC | 10 amps-12AWG | | 3012 | 12Volts | 230VAC | 15 amps-12AWG | | 3024 | 24Volts | 230VAC | 15 amps-12AWG | #### Solar Power Inverter ### Inverter Mode Specifications: | MODEL | | | Mo | del | | | | | | | | | |--|--|---|----------------------------------|--------------------------------------|----------|----------------|--|--|--|--|--|--| | MODEL | 1012 | 1024 | 2012 | 2024 | 3012 | 3024 | | | | | | | | Output Voltage
Waveform | | | Pure Si | ne wave | 20 | | | | | | | | | Rated Output
Power (VA) | 10 | 00 | 20 | 000 | 30 | 000 | | | | | | | | Rated Output
Power (W) | 10 | 00 | 20 | 00 | 30 | 000 | | | | | | | | Power Factor | | | 1 | .0 | ýù- | | | | | | | | | Nominal Output
Voltage (V) | | 230Vac ±10% | | | | | | | | | | | | Nominal Output
Frequency (Hz) | | 50Hz ± 0.3Hz | | | | | | | | | | | | Auto tracking
Main Frequency
(Hz) | | Yes (Following Main first connection)
50Hz @40-80Hz | | | | | | | | | | | | Output Voltage
Regulation | | | ±10% | 6 rms | | | | | | | | | | Nominal
Efficiency | | | >8 | 0% | | | | | | | | | | Over-Load
Protection
(SMPS load) | (125% <lc< td=""><td colspan="6">(110%<load<125%) (shutdown="" 15="" after="" fault="" minutes;<br="" output)="" ±10%:="">(125%<load<150%) (shutdown="" 60s;<br="" after="" fault="" output)="" ±10%:="">Load>150% ±10%: Fault (shutdown output) after 20s</load<150%)></load<125%)></td></lc<> | (110% <load<125%) (shutdown="" 15="" after="" fault="" minutes;<br="" output)="" ±10%:="">(125%<load<150%) (shutdown="" 60s;<br="" after="" fault="" output)="" ±10%:="">Load>150% ±10%: Fault (shutdown output) after 20s</load<150%)></load<125%)> | | | | | | | | | | | | Surge rating | 300 | 0VA | 6000VA | | 9000VA | | | | | | | | | Capable of
starting electric
motor | c I HP I HP | | HP | 2 HP | | | | | | | | | | Output Short
Circuit
Protection | | Current limit (Fault after 10s) | | | | | | | | | | | | Inverter
Breaker Size | 10 |)A | | 30 |)A | W ₁ | | | | | | | | Nominal DC
Input Voltage | 12V | 24V | 12V | 24V | 12V | 24V | | | | | | | | Min DC start
voltage | | | 11V/22 | 2V/43V | | | | | | | | | | Low Battery
Alarm | | | 0.5Vdc ± 0.3Vd
1.0Vdc ± 0.6Vd | | | | | | | | | | | Low DC input
Shut-down | | 1 2 | 0.0Vdc ± 0.3Vd
20.0vdc± 0.6Vd | ic for 12V batte
c for 24V batter | ry
y | | | | | | | | | High DC input
Alarm & Fault | | | 16Vdc ± 0.3Vdc
32Vdc ± 0.6Vdc | for 12V batter
for 24V batter | ý | | | | | | | | | High DC input
Recovery | | 1 3 | 5.5Vdc ± 0.3Vd
1.0Vdc ± 0.6Vd | lc for 12V batte
lc for 24V batte | ry
ry | | | | | | | | | Power saver | | | Load | = 25W | | Load ≦25W | | | | | | | #### Important: - Switch positions "0" and "1" are for monthly battery maintenance only. Return the switch to the appropriate position for the system's batteries when Equalize charging has completed. NEVER EQUALIZE GEL BATTERIES! Use together with BATTERYCHARGER RATE potentiometer (position1) or BATTERY CAPACITY potentiometer (position 0). - 2. Equalize voltages are displayed in the table with an asterisk (*) Switch positions "0" and "1" only. - 3. Switch position "7" is the default values as shipped from the factory. - 4. Always refer to the battery manufacturer's specifications for equalization. | | Switch
setting | | Во | ost | Flo | oat | |----------------------------------|-------------------|------------------|-------------|------|------|------| | D W f | | Description | Voltage | Volt | age | | | | | | 12 | 24 | 12 | 24 | | | 0 | | No charging | | | | | Position of
priority selector | 1 | Gel USA | 14.0 | 28.0 | 13.7 | 27.4 | | priority selector | 2 | AGM 1 | 14.1 | 28.2 | 13.4 | 26.8 | | . <u>.</u> . | 3 | AGM 2 | 14.6 | 29.2 | 13.7 | 27.4 | | | 4 | Sealed lead acid | 14.4 | 28.8 | 13.6 | 27.2 | | | 5 | Gel EURO | 14.4 | 28.8 | 13.8 | 27.6 | | | 6 | Open lead acid | 14.8 | 29.6 | 13.3 | 26.6 | | | Coulter | | Во | ost | Flo | oat | |-------------------------------|---------|--|---|------------------------------|-----------------------------|-----| | | Switch | Description | Voltage | | Voltage | | | Position of priority selector | setting | | 12 | 24 | 12 | 24 | | | 7 | | deactivate battery
mode at 11/22V and
switch to AC and
charge the battery
from PV | | charging stops at
14/28V | | | | 8 | Battery prefer mode
(batt. voltage sets by
bat.selector of solar
controler) | deactivate
mode at 1
and switc
and charg
battery fro | 0.5/21V
h to AC
ge the | charging
13.5/27V | | | | 9 | | deactivate battery
mode at 10/20V and
switch to AC and
charge the battery
from PV | | charging stops at
13/26V | | - Boost CC Stage: If A/C input is applied, the charger will run at full current in CC mode until the charger reaches the boost voltage. - Software timer will measure the time from A/C start until the battery charger reaches 0.3V below the boost voltage, then take this time asT₀ and T₀×10 = T₁. - Boost CV Stage: Start a T₁ timer; the charger will keep the boost voltage in Boost CV mode until the T₁ timer has run out. Then drop the voltage down to the float voltage. The timer has a minimum time of 1 hour and a maximum time of 12 hours. - ◆ Float Stage: In float mode, the voltage will stay at the float voltage. - If the A/C is reconnected or the battery voltage drops below 12Vdc/24Vdc, the charger will reset the cycle above. - If the charge maintains the float state for 10 days, the charger will reset the cycle. | | Model | | | | | | | | |--|--------------|---|---------------|---------------|---------------|------|--|--| | MODEL | 1012 | 1024 | 2012 | 2024 | 3012 | 3024 | | | | Nominal Input
Voltage | | 25 | 230 | Vac | | | | | | Input Voltage
Range | | 155~272Vac | | | | | | | | Nominal Output
Voltage | | Same as input voltage | | | | | | | | MAX Charge
Current | 35A | 20A | 65A | 35A | 75A | 45A | | | | Charge Current
Regulation | Char | Charge current adjustable: 25%, 50%, 75%, 100%. (Optional) | | | | | | | | Battery initial voltage | | 0-15.7Vdc/31.4Vdc (can operate with 0V battery) | | | | | | | | Charger Short
Circuit
Protection | | Circuit breaker | | | | | | | | Breaker Size | | | 30 |)A | | | | | | Over Charge
Protection | Bat. V ≥15.7 | Vdc / 31.4Vd | c, beeps 0.5s | every 1s & fa | ult after 60s | | | | | Charge Algor | ithm | | | | | | | | | Algorithm | Boost CC | Three stage: Boost CC (constant current stage) → Boost CV (constant voltage stage) → Float (constant voltage stage) | | | | | | | Note: When priority selector has 1-6 position (AC priority), the invertor has charger function from AC. When the position is 0 (AC priority), the inverter has no charge function. ### AC/Battery Priority: Our inverter is designed AC priority by default. This means, when AC input is present, the battery will be charged first, For more information, please refer to Charge Stage Transition Definitions on page and the inverter will transfer the input AC to power the load. When you choose battery priority (position of priority selector is 7-9), the inverter will invert from battery (the load is powered from the battery) despite the AC input. Only when the battery voltage reaches the low voltage alarm point, the inverter will transfer the load to AC input, charge battery from PV and switch back to the battery when the battery is fully charged. This function is mainly for wind/solar systems using utility power as back up. | Fault recovery | By restart the machine | | |----------------|------------------------|--| | FAN Operation | on | | Variable speed fan operation is required in invert and charge mode. This is to be implemented in such a way as to ensure high reliability and safe unit and component operating temperatures in an operating ambient temperature up to 50°C. - Speed to be controlled in a smooth manner as a function of internal temperature and/or current. - · Fan should not start/stop suddenly. - · Fan should run at minimum speed needed to cool unit. - Fan noise level target <60db. The fan logic as below: ### Fan Operation | Condition | Enter condition | Leave condition | Speed | |--------------------------------------|------------------|-----------------------------|-------| | | T ≤ 60°C | T > 65℃ | OFF | | HEAT SINK TEMPERATURE Charge Current | 65℃≤ T<85 ℃ | T ≤ 60°C or
T ≥ 85°C | 50% | | | T > 85°C | T ≤ 80°C | 100% | | | I ≤ 15% | 1≥20% | OFF | | | 20%< I ≤ 50%Max | l≤ 15%or
l ≥ 50%Max | 50% | | | I > 50%Max | I ≤ 40%Max | 100% | | | Load < 30% | Load ≥ 30% | OFF | | Load%
(Invert mode) | 30% ≤ Load < 50% | Load ≤ 20% or
Load ≥ 50% | 50% | | | Load ≥ 50% | Load ≤ 40% | 100% | ## Front Panel | | Эко режим (ВКЛ) | Power on with saver mode (power saver ≤ 25W) Power totally off (If there is AC power,inverter have charger function | | | | |-------------------|---|--|--|--|--| | Switch | выкл | | | | | | | Эко режим (ВЫКЛ) | Power on without saver mode | | | | | BRAKE | controller line on | | | | | | FFOREHS
SAPESA | controller charge battery (red: low, orange: normal, green: high) | | | | | | 34990 | AC charge on | | | | | | CETE | AC power on | | | | | | MHBEPTOP | inverter mode | | | | | | ОШИБКА | check inverter | | | | | | | 733 | | | | | ### **Audible Alarm** | Battery Voltage
Low | Inverter green LED Lighting, and the buzzer beep 0.5s every 5s. | | | |----------------------------|--|--|--| | Battery Voltage
High | Inverter green LED Lighting, and the buzzer beep 0.5s every 1s, and Fault after 60s. | | | | Inverter Mode
Over-Load | 110%< load<125%, no audible alarm in 14 minutes, beeps 0.5s every 1s in 15 th minute, and Fault after 15 minutes. 125% <load<150%, 0.5s="" 1s,="" 60s.="" after="" and="" beeps="" every="" fault="" load="">150%, beeps 0.5s every 1s, and Fault after 20s.</load<150%,> | | | | Over
Temperature | Heat sink temp. ≥105°C. Over temp red LED Lighting, beeps 0.5s every 1s: | | | | Protection | | | | | |-----------------------------------|--|--|--|--| | Over
Temperature
Protection | Heat sink temp. ≥105°C, Fault (shutdown Output) after 30 seconds | | | | | Back-Feed
Protection | Yes | | | | ### Table 2 Battery Type Selector Switch Settings | Switch
Position | Description | 12-volt | Models | 24-volt, Models | | Charge Function | | |--------------------|---|----------------------|-------------------------------|----------------------|-------------------------------|---|---| | | | Float voltage
(V) | Bulk/ Equalize
voltage (V) | Float voltage
(V) | Bulk/ Equalize
voltage (V) | Equalize charge rate | Equalize time | | 0 | Equalize 1 -
equalizes at a
rate equal to
the battery
bank Capacity
(in Amp hours)
Divided by 40. | 13.2 | *15 | 26.4 | *30 | Battery
Capacity
Setting | 6 hrs.
Minimun
12 hrs.
Maximun | | 1 | Equalize 2
-charges at a
rate set by
the BATTERY
CHARGER
RATE control. | 13.2 | *15.5 | 26.4 | *31 | Battery
Charger
Rate
Setting
(manual) | 6 hrs.
minimum
12 hrs.
maximum | | 2 | Deep Cell
Lead Acid 2 | 13.3 | 15 | 26.6 | 30 | Provides an additional
Float and Bulk settings
for deep cycle, lead
acid batteries. Refer to
the battery
manufacturer
recommendation for
Float and Bulk settings | | | 3 | Not
Specified | 13.6 | 14.3 | 27.2 | 28.6 | Provides an additional
setting of Bulk and
Float voltages. | | | 4 | GeCel 2 | 13.7 | 14.4 | 27.4 | 28.8 | Recommended for gel
cell batteries that
specify high float
voltages.Check with
the battery manufacturer | | | 5 | Gel Cell 1 | 13.5 | 14.1 | 27 | 28.2 | Typical gel cell setting | | | 6 | PcCa-lead
Calcium | 13.2 | 14.3 | 26.4 | 28.6 | Use this setting for
sealed type car
batteries. | | | 7 | Deep Cycle
Lead Acid 1
(Default
Setting) | 13.4 | 14.6 | 26.8 | 29.2 | Factory setting for
typical deep cycle lead
acid batteries. | | | 8 | NiCad 1 | 14 | 16 | 28 | 32 | Use for NiCad battery
systems | | | 9 | NiCad 2 | 14.5 | 16 | 29 | 32 | Recommended for use
with nickel iron
batteries | |